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Abstract 

 

"How do proteins fold?" is one of the most challenging questions in 

molecular biology. Researchers exerted great efforts to solve this problem 

over the few last decades. However the enormous number of theoretically 

possible structures and the wide diversity of existing, already known 

conformations slow down the wheel of scientific contribution. And 

unfortunately, the longer the protein under study the more difficult the 

problem becomes. 

This study approaches the problem from a statistical point of view. 

Taking advantage of the similarity among newly discovered structures 

and already known ones and guided by the fact that the hydrophobicity of 

a protein is the key factor in its folding process. The approach introduced 

here tries to prove the existence of a relationship between the 

hydrophobicity of the protein's constituent amino-acids and its backbone 

angles at subsequence level. The study attempts to statistically prove the 

existence of this relationship through building a library of clustered 

hydrophobicity patterns, i.e., a library of protein subsequences clustered 

based on their hydrophobicity, then the central angle measurements of 

these subsequences are extracted. Finally, the best standard continuous 

probability distribution that describes the central angle measurements of 

each cluster is sought using a statistical test known as Kolmogrov-

Smirnov (KS) test. This process is repeated for subsequences of different 

lengths typically 3, 5 and 7. The results of the KS-test are used to assess 

the strength of the relationship subject to these different lengths. 

It was found that there is a considerable improvement in KS-test results 

of clustered subsequences over unclustered ones i.e. the relationship is 
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more apparent among proteins with similar hydrophobicity pattern, the 

thing that emphasis the relationship between hydrophobicity patterns and 

angle measurements. The study showed also that the longer the 

subsequences used in clustering, the better the fits. In other words, the 

goodness of fits is directly proportional to the length of the subsequences 

used. 
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Chapter 1  

Introduction 

 

1.1 Motivation 

Discovering the method by which a protein folds is crucial to many 

medical and generally biological fields. It helps in identifying malformed 

proteins which in turn helps in avoiding serious diseases that incorrect 

structures can produce, like mad cow disease. Protein folding is also very 

important in the design of drugs; Knowledge of the shape of a protein is 

fundamental in designing enhancing drugs, if it is useful or suppressing 

drugs, if it is harmful. 

Extensive attempts to solve the problem were made but no unique, 

complete solution has been found yet. Each researcher adds a new 

technique or a new piece of information towards the ultimate, complete, 

and undiscovered yet solution. 

1.2 Objective 

This study assumes and attempts to empirically prove that there is a 

strong relationship between the hydrophobicity of the residues of a 

protein and its backbone angles. Although the relationship between 

hydrophobicity and the folded structure of a protein is intensively studied 

and widely accepted, this study claims that a strong relationship exists not 

only between the final conformation and the whole protein, but also 

between backbone angles and hydrophobicity pattern of its local 

subsequence. 

This approach aims also to build a statistical library that can be used by 

researchers working with protein folding to predict backbone angles 
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using information about the hydrophobicity of the local residues 

surrounding these angles. 

1.3 Approach Summary 

In this study a four-phased approach is introduced. First of all, Input data 

are prepared in two phases which are: angle extraction and chopping. A 

k-means clustering is performed next. The corner stone of this study is 

that the similarity function of clustering depends on subsequences 

hydrophobicity. The final stage takes all the clusters and tries to fit them 

into one of 66 possible standard continuous probability distributions 

using a Kolmogrov-Smirnov test. 

1.4 Thesis Organization 

Chapter 2 discusses the protein structure prediction problem and why it is 

important and complex. An overview of some important studies and 

researches in the field of protein folding is presented in chapter 3. The 

same chapter illustrates the relation between the approach introduced here 

and the prior art. Chapter 4 discusses the method used in this study in 

great detail, phase by phase. Chapter 5 finalizes the thesis with a 

discussion of the results. A conclusion is drawn and possible future work 

is introduced in chapter 6. 

Three appendices can be found at the end of the thesis including some 

necessary topics. These topics are separated in the form of appendices 

because they are either not so close to the interest of this study or because 

they are meant to be used as a reference while discussing other parts (to 

prevent reader distraction). 
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Chapter 2  

Biological Background and Motivation 

 

2.1 Why to study proteins? 

The word "protein" originates from the Greek word "proteus" which 

means "of the first rank". Proteins constitute much of the bulk of living 

organisms: enzymes, hormones and structural material. Most of the genes 

in the genetic makeup of an organism are protein-coding genes i.e. they 

specify instructions for building proteins. They are large biological 

molecules with molecular weight up to few million Daltons1. Each 

protein has a well-defined function which ranges from building up DNA 

and RNA molecules to enzymatic catalysis, coordinated motion, signal 

transduction, transport, storage and immune response. Some proteins 

serve multiple functions. 

2.2 Amino Acids 

An amino acid is a molecule that contains amine (NH2) and carboxyl 

(COOH) functional groups. Generally amino acids are very important in 

biology. They are involved in many vital activities in the bodies of living 

organisms as well as some industries. This involvement is summarized in 

the following points: 

1. Amino acids play variety of roles in metabolism 

2. They form parts of co-enzymes 

3. Some amino acids act as precursors2 for the biosynthesis of other 

molecules 

4. Some other amino acids are used in food technology and industry 

and are generally key players in the field of nutrition 
                                                             

1
 Dalton: A unit of mass very nearly equal to that of a hydrogen atom. It is named after "John Dalton" 

(1766-1844), who developed the atomic theory of matter. 
2
 Precursor: a substance from which another substance is formed (especially by a metabolic reaction) 



5. α-amino acids represents the basic building block of any protein

Chemically there are several types of amino acids; 

amino acids4. Biochemistry is concerned only with 

are called proteinogenic (those 

acids are those amino acids whose general formula is H

where R is an organic substituent called the side chain. As shown from 

Fig 2.1, in α-amino acids both the amine and carboxyl groups are 

attached to the central carbon C

is called C'. 

 

What discriminates one α

side chain can be very simple lik

hydrogen atom or it can be a methyl group

even be a large heterocyclic group

3
 α-amino acids: Any amino acid that has the amino and 

same carbon atom; especially those amino acids that occur naturally as 

4 β-amino acids: Those which have thei

carbon proteins. 
5
 Proline is an exception to this formula as it contains no NH

6
 Methyl Group: In chemistry, a methyl group

methane (CH4). It has the formula

in many organic compounds. 
7
 Heterocyclic Group/Molecule: An organic group/molecule containing rings 

carbon atom on the ring. 
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amino acids represents the basic building block of any protein

Chemically there are several types of amino acids; α-amino acids

. Biochemistry is concerned only with α-amino acids which 

are called proteinogenic (those forming a protein) amino acids. α

acids are those amino acids whose general formula is H2NCHRCOOH

where R is an organic substituent called the side chain. As shown from 

amino acids both the amine and carboxyl groups are 

central carbon Cα. The carbon atom of the carboxyl group 

 

Figure  2.1: α-amino acids 

What discriminates one α-amino acid from another is their side chains. A 

side chain can be very simple like that of glycine which is only one 

hydrogen atom or it can be a methyl group6 like that of alanine 

even be a large heterocyclic group7 like that of tryptophan. 

                                                             

that has the amino and carboxylic functional groups attached to the 

atom; especially those amino acids that occur naturally as peptides and proteins

: Those which have their amino group bonded to the β carbon rather than the α 

Proline is an exception to this formula as it contains no NH2 group 

methyl group is a hydrophobic alkyl functional group na

formula -CH3 and is often abbreviated -Me. Such hydrocarbon groups occur 

Heterocyclic Group/Molecule: An organic group/molecule containing rings with at least one non

amino acids represents the basic building block of any protein 

amino acids3 and β-

amino acids which 

forming a protein) amino acids. α-amino 

NCHRCOOH5 

where R is an organic substituent called the side chain. As shown from 

amino acids both the amine and carboxyl groups are 

. The carbon atom of the carboxyl group 

amino acid from another is their side chains. A 

which is only one 

 or it can 

                                                            

attached to the 

proteins 

rather than the α 

named after 

groups occur 

with at least one non-
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There are only 20 standard α-amino acids in nature as shown in Fig 2.2. 

The International Union of Biochemistry and Molecular Biology 

(IUBMB) and The International Union of Pure and Applied Chemistry 

(IUPAC) now also recommend standard abbreviations for the two 

additional amino acids; L-Selenocysteine and L-Pyrrolysine which are 

(Sec/U) and (Pyl/O) respectively. 

2.3 Chemically, what is a protein? 

Amino acids are linked to each other using polypeptide bonds8 to form 

polypeptide chains. Around 40-50 residues appears to be the lower limit 

for a biologically functional peptide sequence. Although proteins' lengths 

start from lower limit, most of the proteins are longer than this. Actually 

some proteins contain thousands of amino acids e.g. membrane proteins9. 

Average protein length is around 300 residues [42]. 

 

                                                             
8
 Peptide Bond: is a chemical bond formed between two molecules when the carboxyl group of one 

molecule reacts with the amino group of the other molecule. 
9
 Membrane Protein: is a protein molecule that is attached to, or associated with the membrane of a 

cell or an organelle. More than half of all proteins interact with membranes. 
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Figure  2.2: The names, abbreviations and R-groups of the twenty amino acids. Atoms are 

coloured white for carbon, light gray for nitrogen, dark grey for oxygen and black for 

sulphur. Small atoms are hydrogen. Bonds connecting R-groups to main-chain atoms are 

drawn in bold. Note that the proline side chain joins the main chain at both Cα and N atoms, 

which are shown 

2.4 Diversity of proteins 

For the purpose of discussing the diversity of proteins in nature, take a 

sequence (chain) of only 10 amino acids as an example. Theoretically the 

number of chains that can be formed by substitution of amino acids in 
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each of the 10 positions is 2010 (20 to the power of 10), which are 

approximately 10 trillion different chains. Taking into consideration 

longer chains will increase the number of possibilities exponentially to 

unbelievable limits. Although theoretical calculations yield huge figures, 

luckily these figures are not even close to the actual number of 

possibilities found in nature. The actual number of possibilities of a chain 

with a given length – though still big – is much smaller than the 

theoretically calculated figure. 

Unfortunately studying proteins merely as chains of amino acids is 

pointless. It was found that the role of a protein is not a direct function of 

its constituents, however it rather depends on the three dimensional shape 

of its sequence in space. When a protein is in action it takes a specific 

conformation. This conformation is the three dimensional structure 

representing the final stable shape of the protein in its solvent. This final 

structure is called the protein native state. This native state is what 

determines the functionality. 

2.5 Structural definition of a protein 

In order to simplify the way of studying protein structure in its different 

levels of abstraction, a protein is described in four levels; primary, 

secondary, tertiary and quaternary, depending on the amount of structural 

details included in the description. 

2.5.1 Primary structure 

The primary structure is the simplest way of describing a protein. It 

specifies the structure of covalent bonds10 in a protein molecule. So the 

primary structure is merely the chain of amino acids or residues11 forming 

the protein. As stated previously, amino acids are linked head-to-tail 
                                                             

10
 Covalent Bond: is a chemical bond that involves sharing a pair of electrons between atoms in a 

molecule. 
11

 Residue: (here) is an amino acid, which is a basic element in a protein sequence. 
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using peptide bonds i.e. the C' of amino acid residue i is connected to N 

atom of amino acid residue i+1. The convention is to list residues in 

head-to-tail order starting at the nitrogen atom N of one side terminal 

residue and ending at the C' atom of the other terminal residue. The i-th 

residue of a protein is the i-th residue of its sequence listed in the 

conventional order. It is also agreed on saying a protein of length n 

referring to a protein whose sequence contains n residues. See Fig 2.3. 

 

Figure  2.3: Primary structure 

2.5.2 Secondary Structure 

This is the higher level of conformation that describes frequent patterns in 

the fold of the sequence. In other words the secondary structure is an 

abstraction of the detailed positioning of each atom in a protein molecule 

using its x, y and z coordinates (which is referred to by the name "tertiary 

structure" later on). Instead of being concerned with the exact coordinates 

of each atom, the secondary structure assigns each segment of continuous 

residues to one of several conformational classes. Stating that a segment 

of n residues falls into one of these classes describes the contribution of 

each of its residues to the final local conformation of this segment. The 

most frequent patterns (classes) according to Kabsch and Sandler [1.3] 

are: 
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1. Helices (spiral parts in Fig 2.4) 

2. Strands (arrow sheets in Fig 2.4) 

3. Coils (all the other parts in Fig 2.4) 

 

Figure  2.4: Secondary structure 

 

2.5.3 Tertiary structure 

As discussed previously, backbone residues can form an enormous 

number of different sequences. However this is not the only challenge. 

Even for a particular sequence it is hard to describe its final stable shape 

in 3D. This is true because even slightly different proteins (with minor 

differences in their sequences) can have completely different final 

conformations. This happens because the internal angles of the backbone 

are not rigid; they can rotate in almost each residue. These torsion angles 

are called Ramachandran angles, and by convention the angle rotating 

around the N-Cα bond is called ɸ while the angle rotating around the bond 

Cα-C' is called Ψ (See Fig 2.6). The plot shown in Fig 2.5 is called 

Ramachandran's plot. It highlights the most likely measurements of ɸ and 

Ψ. 
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Figure  2.5: Ramachandran plot 

 

Theoretically any 3D conformation can be achieved by rotating ɸ and Ψ 

angles. The term "tertiary structure" refers to the 3D description of the 

native fold of a protein. Backbone tertiary structure can be described 
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either using its n (ɸ and Ψ.) pairs or using the three dimensional spatial 

coordinates of each atom. A full specification of the tertiary structure 

requires the details of the backbone as well as the side chain which can 

also be described using angles or atom coordinates. 

 

Figure  2.6: ɸ and Ψ angles 

2.5.4 Quaternary structure 

A quaternary structure is a collection of tertiary structures of more than 

one chain forming a single protein. Thus, only those proteins composed 

of more than one chain have quaternary structures. 

2.6 The truth about protein folding 

Surprisingly from all the possible conformations which are actually 

enormous, only about 1000 different natural protein folds are found in 

nature [43]. This is actually a very small number compared to the number 

of theoretical possibilities. 

A protein can be folded (to its native state) and unfolded (to a flexible 

open chain) reversibly by changing the pH value, or the concentration of 

some denaturant12 in solution [44]. In 1931 Wu [45] pointed out that 

                                                             
12

 Denaturant: a substance used for denaturation. 
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denaturation13 was in fact the unfolding of a protein from "the regular 

arrangement of rigid structure to irregular, diffuse arrangement of 

flexible open chain". In other words, denaturation is unfolding a protein 

from its tertiary structure to its primary structure. 

2.6.1 How does a protein fold? 

Folding actually depends on several factors. The most important factor is 

the hydrophobicity. Hydrophobicity is the degree to which amino acids 

dislike water. It was found that proteins tend to have a hydrophobic core 

i.e. in the folding process the hydrophobic amino acids (those hating 

water) tend to be in the center of the conformation and they are 

surrounded by a covering surface of hydrophilic amino acids (those liking 

water). A pioneer work by Alfinsen in the so called "Thermodynamic 

hypothesis" in the late 1950's and early 1960's [46] as well as other 

subsequent researches proved that the amino acids sequence or the so 

called the primary structure of the protein has all the information needed 

to know the complete final folding of this protein. Alfinsen stated also 

that the native conformation is the conformation with the global 

minimum free energy. This leads to what is called "Levinthal paradox". 

2.6.2 Levinthal paradox 

"if a protein is to find its functional conformation by wandering randomly 

throughout conformation space, in excess of 1050 years would be 

required for folding" [47]. However, Levinthal and Wetlaufer pointed out 

that proteins fold much too fast (by at least tens of order of magnitude) to 

involve an exhaustive search.  This is the so called Levinthal paradox. 

But how can a protein find a native state without a globally exhaustive 

search? 

                                                             
13

 Denaturation: Denaturation is a process in which proteins or nucleic acids lose their structure 

(tertiary structure) by application of some external stress or compound 
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The answer of this question is that since the native conformation is the 

global minimum of Gibbs free energy, there exists a great sort of 

cooperative work in protein folding. Experiments have shown that the 

actual work of folding is done using a very limited number of pathways 

guided by the thermodynamic factors. It has been observed by Sali et al. 

[48] that the folding time seems to be small if and only if the difference in 

energy between the lowest energy conformation and the next lowest 

energy conformation is large. Their work indicates that thermodynamic 

factors might have an important role in the folding process which greatly 

limits the number of possibilities and prevents the protein from getting 

lost in the huge search space. 

In the following chapter some of the most popular and successful 

methods are discussed. Chapter 3 gives an overview of the current state 

of the art techniques as well as some of the previous outstanding studies 

in the field of protein folding. It also put this study in its place with 

respect to these studies. 
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Chapter 3  

Related Work 

 

Protein structure prediction has been one of the most challenging 

problems facing researchers over the few last decades. Exact prediction 

was found to be too far from today's state of the art even using simplified 

models such as the – Hydrophobic-Polar (HP) model which was found to 

be NP-complete14 [1]. Several approaches have been proposed to simplify 

the prediction process. There are several criteria used to classify previous 

attempts in the field of protein folding. One of the most popular criteria 

used to differentiate prediction approaches from each other is the level of 

predictor's knowledge prior to the prediction process. Using this criterion, 

prediction approaches are said to be either ab initio or homology methods. 

Hybrid approaches are also available. 

3.1 Homology Methods (Comparative Modeling) 

So far, protein folding prediction methods based on homology have been 

the most successful ones. Homology modeling is based on the notion that 

new proteins evolve gradually from existing ones by amino acid 

substitution, addition, and/or deletion and that the 3D structures and 

functions are often strongly conserved during this process. Many proteins 

thus share similar functions and structures and there are usually strong 

sequence similarities among the structurally similar proteins. 

For comparative modeling, local sequence comparison methods are 

usually used since the sequence similarity is most likely over segments of 

the two sequences. The local sequence comparison can either be pair wise 

or profile based. Pair wise comparisons, such as the widely used BLAST 

[20] in the early days, can detect sequence similarities better than 30%. A 

                                                             
14

 See appendix (II) 
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number of tools have also been developed to detect weak homology 

relationships. Methods like profile [21] and HMM [22] use a statistical 

profile of a protein family. 

Since its invention in the early 1990s [27, 28], threading has become one 

of the most active areas in proteins structure prediction. Numerous 

algorithms have been developed during the past 19 years for the purpose 

of identifying structure templates from the PDB, which use techniques 

including sequence profile–profile alignments (PPAs) [29–32], structural 

profile alignments [33], hidden Markov models (HMMs) [34,35], 

machine learning [36,37], and others. 

The question facing most of the researchers is: "To what extent are the 

currently known protein structures dependable in predicting novel and 

unattended structures?" 

3.2 Ab Initio Methods 

Unfortunately, up to this moment the answer of this question is "Not 

dependable enough yet". In other words, the possible protein structure 

permutations are still much more than those found in currently known 

structure, the thing that obligates researchers to use another approach that 

is independent of the currently known structure libraries. This family of 

algorithms and techniques is called "Ab Initio" methods. 

When no suitable structure templates can be found, Ab Initio methods can 

be used to predict the protein structure from sequence information only. 

Conformations that minimize the energy function are taken to be the 

structures that the protein is likely to adopt at native conditions. In this 

case the most obvious representation is a number of connected points in 

space, each point represent an atom in the protein under investigation. 

Unfortunately the complexity of such a representation makes the solution 

simply impossible with today’s computational capacity. Even if the 
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representation is further simplified and the points represent whole 

residues instead of atoms, the problem remains intractable. So – for 

practical reasons – most Ab Initio prediction methods use reduced 

representations of the protein to limit the conformational space to 

manageable size and use empirical energy functions that capture the most 

important interactions that drive the folding of the protein sequence 

toward the native structures. 

Of course ab initio techniques are not as successful as homology 

techniques that use existing structures as a guidance through the 

prediction process. However there are other strong motivations to pursue 

research in this field: 

1. Ab initio techniques are the last resort for discovering unattended 

structures. 

2. They give insights on the internals of the folding process. 

3. They can be applied – outside of the prediction problem – to the 

large scale conformational change in protein functioning. 

One of the best Ab Initio methods is ROSETTA which performed better 

than other Ab Initio methods in CASP. Actually most of the pure ab initio 

approaches are now obsolete because it was fond that even with ab initio 

approaches it is very useful to use some sort of prior knowledge extracted 

from existing protein structures. 

3.3 Hybrid Methods 

Most of the recent approaches tend to use hybrid double-staged prediction 

algorithms [16]. In this type, the output of the first stage is taken as an 

input into the second stage. In many cases the first stage is used to 

approximately predict the secondary structure of a protein [9] while the 

second stage continues to approximately predict the tertiary structure 

[16]. Due to the difficulty of the folding problem, researchers use 
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approximated and simpler protein representations like using lattice 

structures such as HP models [9] and face-centered-cubic lattice [8,16] 

and/or using heuristic techniques in order to simplify the calculations 

[2,7,17]. 

3.4 Overview of the different approaches 

Using subsequence structural information as a step towards the ultimate 

goal of complete prediction is widely used in literature [4,6,10,14,15]. 

Another approach is to deal with the protein as a whole 

[7,11,12,13,16,17] trying to find the optimum conformation with 

minimum free energy [11]. Statistical analysis of protein subsequences 

has appeared in literature too. Rong She et al. used two types of 

subsequence classifiers to identify outer membrane proteins of Gram-

negative bacteria [14]. Eran Segale and Daphne Koller introduced a 

general probabilistic framework for clustering biological data into a 

hierarchy [5]. Eli Hershkovitz et al. used torsion angles to search for 

clusters in RNA conformational space [4]. Estimating the probability 

density function was used by Diego Rother et al. with the notion of 

ensembles [3]. Marcio Dorn and Osmar Norberto used the ɸ and Ψ angles 

of the central residue of a subsequence along with a secondary structure 

prediction method to cluster subsequences (fragments). The following 

sections categorize and explain these attempts – as well as some others – 

in greater detail. 

3.5 Using lattice models 

3.5.1 Lattice models, why and how? 

As previously mentioned the number of possibilities to which a protein 

can fold is very large making the exhaustive search throughout the search 

space almost impossible (at least using today's most powerful 

supercomputer). This leads by the researchers to use discrete lattice 
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structures where each node in the lattice represents one amino acid 

residue. This is an approximated model of the protein conformation. Of 

course discrete lattice models greatly simplifies the search space, 

however this comes with a cost. Using discrete lattice models leads to the 

loss of many of the specific details of the actual protein conformation. 

The advantages of using discrete models can be summarized in the 

following point: 

1. Eliminating a vast area of the search space 

2. The ability to model large number of conformational changes. This 

is not possible with detailed atomic models 

3. Reducing the number of parameters used in order to solve the 

problem. Actually this is a direct result of eliminating the 

conformation fine details. 

4. Representing a prediction of the overall conformation of large 

polypeptide chains such as proteins, the thing that is time 

consuming and almost impossible with detailed atomic models. 

On the other hands the disadvantages are: 

1. These models limit the angles between any three consecutive 

amino acids of the backbone to specific measurements. For 

example square and cubic HP models limit all the angles to 90". 

Other models allow more measurements such as 45", 135", 120" 

and others. This is a great pitfall since the actual measurements are 

not so confined. 

2. Some details are eliminated such as bond energies and charges 

3. Reaching a stable structure in a lattice model can be different from 

the actual stable structure of the protein. 
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Even discrete lattice models have several variations. One of the most 

famous models is the HP model introduced in a pioneering work by Dill 

[49]. 

3.5.2 HP model 

In this type of models a primary structure with n amino acids is viewed as 

a sequence S = <s1, s2 … sn>. The symbol si represents an amino acid 

residue. Each residue can be either hydrophobic or hydrophilic. The legal 

conformations are self-avoiding paths on a lattice, usually taken to be 

Cartesian (sometimes triangular lattice), in which vertices are labeled by 

the amino acids. 

This model depends on the hydrophobicity of each amino acid. Two 

adjacent amino acids in the conformation that are not successive in the 

sequence add -1 to the overall energy value. In this way the conformation 

with most contiguous hydrophobic amino acids i.e. the one with a 

hydrophobic core will have the smallest energy value. 

HP lattice can be viewed in 2D or 3D forms. See Fig 3.1, Fig 3.2 and Fig 

3.3 respectively. In 2D lattice all the torsion angles are 0". In the 3D 

lattice a torsion angle is either 0" or 180". In fact this lattice is very 

simple and ignores many features and details of the conformation, but it 

captures the major details of the fold. 

 

 

 

 

 

Figure 3.1: Triangular HP model 



 

 

 

 

 

 

3.5.3 FCC model 

The HP model was extensively studied in literature however there is a 

debate in its usefulness because i

accuracy. Other models have been introduced. A face

lattice called cube-octahedron that has 14 faces and 12 vertices was 

introduced by Raghunathan and Jernigan in 1997 [8].
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The HP model was extensively studied in literature however there is a 

debate in its usefulness because it is considered too far from the required 

accuracy. Other models have been introduced. A face-centered cubic 

octahedron that has 14 faces and 12 vertices was 

introduced by Raghunathan and Jernigan in 1997 [8]. 

 

Figure  3.1: 2D HP square laAce 

Figure  3.2: 3D HP square laAce 

Figure  3.3: Cube-Octahedron lattice 

The HP model was extensively studied in literature however there is a 

t is considered too far from the required 

centered cubic 

octahedron that has 14 faces and 12 vertices was 
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As a face-centered cubic lattice all the vertices has the same distance 

from the center. Fig 3.4 represents the shape of the lattice. Assume that 

each atom is a Cα. As seen in Fig 3.5 the possible angles between each 

three connected Cα are 60", 90", 120" and 180". In Fig 3.5 the red balls 

makes a 60" with the vector made by the two yellow nodes connecting 

the two units represented in the figure. The two grey balls make an angle 

of 180" with the same vector. Although there are several angle choices in 

this lattice the only allowed angle measurements in a protein are 90" and 

120" due to steric constraints15. Consequently, three of such vectors can 

define valid torsion angles, typically the measurements of these torsion 

angles are 54.7", 109.5", 125.3" and 180". 

Cube-octahedron is much more flexible than the HP model (even its 3D 

form). It also gives a more realistic representation to secondary structure 

motifs (α-helices and β-strands). 

3.6 Using heuristic techniques 

Various optimization methods have been applied to formulations of the 

folding problem – especially with ab initio methods – that are based on 

                                                             
15
 Steric constraints: Steric effects arise from the fact that each atom within a molecule occupies a 

certain amount of space. If atoms are brought too close together, there is an associated cost in energy 

due to overlapping electron clouds. 

Figure  3.4: Angles of cube-octahedron 

lattice 
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reduced models of protein structure, including Monte Carlo methods, 

Genetic algorithms, Tabu Search, simulated annealing, hybrid techniques 

among others. 

In 2005 Thang N. Bui and Gnanasekaran Sundarraj presented an efficient 

genetic algorithm for the protein folding problem under the HP model in 

the two-dimensional square lattice [17]. A special feature of this 

algorithm is its usage of secondary structures, which the algorithm 

evolves, as building blocks for the conformation. Experimental results on 

benchmark sequences show that the algorithm performs very well against 

previously known evolutionary algorithms and Monte Carlo algorithms. 

In the same year – 2005 – Alena Shmygelska1 and Holger H. Hoos used 

introduced an ant colony optimization (ACO) algorithm to address the 

non-deterministic polynomial-time hard (NP-hard) combinatorial 

problem of predicting a protein's conformation from its amino acid 

sequence under a widely studied, conceptually simple model – the 2-

dimensional (2D) and 3-dimensional (3D) hydrophobic-polar (HP) model 

[7]. This is an improvement of their previous ACO algorithm for the 2D 

HP model and its extension to the 3D HP model. The empirical results 

they got indicate that their rather simple ACO algorithm scales worse 

with sequence length but usually finds a more diverse ensemble of native 

states. 

In 2006 Clayton Matthew Johnson and Anitha Katikireddy proposed a 

simple genetic algorithm for finding the optimal conformation of a 

protein using the three-dimensional square HP model [2]. A backtracking 

procedure is used to resolve the positional collisions and illegal 

conformations that occur during the course of genetic search. 

Backtracking is shown to be a simple and efficient means of collision 

repair that requires little overhead. Empirical results show that a genetic 
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algorithm using backtracking can obtain the lowest energy structure of an 

amino acid sequence in fewer energy evaluations than earlier approaches. 

In 2007, Xiaolong Zhang, Xiaoli Lin, Chengpeng Wan and Tingting Li 

introduced a genetic algorithm for 3D off-lattice protein folding [40]. In 

this approach the PSP problem is converted from a nonlinear constraint-

satisfied problem16 to an unconstrained optimization problem. They 

showed that their approach have promising results in three dimensional 

prediction. 

In 2008, Madhu Smita, Harjinder Singh and Abhijit Mitra used a variant 

of standard genetic algorithms called real valued genetic algorithm in 

order to solve the PSP problem [39]. In the same year, Xiaolong Zhang 

and Wen Cheng proposed an algorithm that uses an enhanced version of 

Tabu Search (TS) for 3D off-lattice protein folding. They claim that their 

approach successfully reaches conformations with a single hydrophobic 

core which makes these conformations more realistic than those 

developed by previous methods [41]. 

3.7 Use of subsequence structural information 

Many researchers used information of the subsequences of a protein or a 

peptide chain in order to predict the whole structure of the protein. 

In [15] Saravanan Dayalan et al. proposed a dihedral angle database of 

short sub-sequences up to length 5. They claimed that the proposed 

database would handle protein structure prediction program queries 

efficiently that is based on short subsequences and exact matches. 

Previously proposed dihedral databases have limitations such as not being 

able to retrieve dihedral values for one or more amino acids occurring in 

sub-sequences or designed for a specific set of proteins based on its 

sequence identity. The database proposed in this paper overcomes these 
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 Constraint-Satisfied Problem (CSP): See appendix (III) 
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limitations by considering all proteins of PDB during dihedral angle 

extractions and by extracting dihedral values of one or more amino acids 

that occur in a specific sub-sequence. 

In 2005, Hardik A. Sheth and Sun Kim aligned protein subsequences and 

clustered them in order to discover similar motifs17. They used clustering 

in order to generate clusters of homogenous sequences when the input 

sequences are non-homogenous [6]. 

Another attempt made in [10] was to use torsion angles measurement of 

the subsequences in order to predict secondary structures (discussed later 

in detail). 

3.8 Dealing with the protein as a whole 

Many researchers look at the protein as a whole instead of considering its 

subsequences. Most of the approaches falling in this category are those 

that use heuristic techniques. 

In 1997 Richa Agarwala et al. presented a set of folding rules for a 

triangular lattice and analyze the approximation ratio which they achieve 

[13]. They also tried to compare several lattice structures and choose the 

best. They claimed that the best choice is the triangular lattice. 

In [7] – as discussed previously – an ACO algorithm is applied to the 

protein conformation as a whole.  

In 2003, Neal Lesh et al. presented new lowest energy configurations for 

several large benchmark problems for the two-dimensional 

hydrophobic/hydrophilic model. They found these solutions using tabu 

search using a novel set of transformations that they called pull moves. 

Their experiments show that their algorithm can find these best solutions 
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 Motifs: are short, conserved subsequences that are part of a family of subsequences. The use of 

protein sequence patterns (or motifs) to determine the function of proteins is an essential tool for 

sequence analysis. 
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in 3 to 14 hours, on average. Pull moves appear quite effective and may 

also be useful for other local search algorithms for the problem [12]. 

As discussed in [17], a genetic algorithm was introduced to solve the 

problem in 2D HP lattice. 

In 2007, one of the most remarkable studies was carried out by Sergio 

Raul Duarte Torres et al. In this study a model based on genetic 

algorithms for protein folding prediction is proposed. The outline is 

depicted in Fig 3.6. The most important features of the proposed 

approach are: 

1. Heuristic secondary structure information is used in the 

initialization of the genetic algorithm in order to generate realistic 

– with realistic structures – chromosomes for the initial random 

population. 

2. An enhanced 3D spatial representation called cube-octahedron is 

used (review section: using lattice models - FCC model). 

3. Data preprocessing of geometric features is made to characterize 

the cubeoctahedron using twelve basic vectors to define the nodes. 

4. Biological information (torsion angles, bond angles and secondary 

structure conformations) was pre-processed through an analysis of 

all possible combinations of the basic vectors which satisfy the 

biological constrains defined by the spatial representation. 

5. Hashing techniques were used to improve the computational 

efficiency. The pre-processed information was stored in hash 

tables, which are intensively used by the genetic algorithm. 

The implementation developed in this research drastically decreased the 

algorithmic complexity of the protein folding construction and search. 

Specifically, strategies such as data preprocessing, hashing techniques 

and spatial vector representation made possible a highly efficient model 

in terms of time and computational resources. 
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The use of hash tables provides an excellent computational technique to 

model amino acid spatial occupancy, because the number of collisions are 

reduced to zero and the insertion, erasing and search are very efficient. 

Secondary structure information is fundamental for the accuracy of the 

predicted models, given the importance of those conformations in the 

protein folding process present in nature [16]. 

3.9 Statistical analysis of protein subsequences 

Using statistical analysis in bioinformatics is widely used in literature. In 

2002, Eran Segal and Daphne Keller introduced Probabilistic Abstraction 

Hierarchies (PAH) a general probabilistic framework for clustering data 

into a hierarchy [5]. Biological data, such as gene expression profiles or 

protein sequences, is often organized in a hierarchy of classes, where the 

instances assigned to “nearby” classes in the tree are similar. Most 

Figure  3.5: Outline of the algorithm proposed in [16] 
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approaches for constructing a hierarchy use simple local operations, that 

are very sensitive to noise or variation in the data.  In their work Eran and 

Daphne showed how PAH can be applied to gene expression data, protein 

sequence data, and HIV protease18 sequence data. This feature helps in 

avoiding local maxima and in reducing sensitivity to noise. 

In 2006, Eli Hershkovitz et al. tried to solve the problem of predicting 

RNA conformations [4]. Predicting RNA conformation is more complex 

than predicting protein structure due to the large number of degrees of 

freedom (torsion angles) per residue. In their work, they used and 

extended classical tools from statistics and signal processing to search for 

clusters in RNA conformational space. 

3.9.1 Estimating probability density function 

In 2008, Diego Rother et al. made a remarkable attempt that worth 

mentioning. In one of the very few times they tried to study the 

fluctuation and variation under physiological conditions [3]. In their work 

they introduced a framework for estimating probability density functions 

in very high dimensions and then apply it to represent ensembles19 of 

folded proteins. Although this is not strongly related to the approach 

pursued in our study, using probability density functions is the common 

aspect between the two studies. 

3.10 Prediction using angle measurements 

Most of the researcher who worked on the protein folding problem – 

especially those who didn't use lattice models – studied the two angles ɸ 

and Ψ. One of the most recent approaches is that introduced by Márcio 
                                                             

18
 Protease: any enzyme that catalyzes the splitting of proteins into smaller peptide fractions and 

amino acids by a process known as proteolysis. 
19

 Ensemble: An ensemble is a set of conformations of the same protein. Each conformation 

corresponds to a particular arrangement of the protein’s constitutive atoms in three-

dimensional (3D) space. This arrangement can be described (or par>ally described) by 

different sets of features depending on the application at hand. In [3] the backbone of the 

protein is described by the usual torsion angles ɸ and Ψ. 
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Dorn and Osmar Norberto de Souza in 2008. In their study they defined 

what is abbreviated as "CRef" (a central-residue-fragment-based method). 

With CReF they expected to obtain approximate 3-D structures which can 

then be used as starting conformations in refinement procedures 

employing state-of-the-art molecular mechanics methods such as 

molecular dynamics simulations. CReF does not make use of entire 

fragments, but only the ɸ and Ψ torsion angle information of the central 

residue in the template fragments obtained from PDB. After applying 

clustering techniques to these data they built approximated conformations 

for the target sequence. Their method is very fast. Their initial results 

show that the predicted conformations adopt a fold similar to the 

experimental structures. 

They applied their approach to three case studies – three peptide chains – 

with lengths ranging from 34 to 70 amino acid residues. In the three case 

studies their approach reached correct secondary structures and overall 

fold predictions. For longer chains the results were less accurate. CRef 

failed to predict correct tertiary structures due to its limited ability to 

predict coiled parts such as turns and loops. 

3.11 How this study differs from prior art? 

Simply this study is an attempt to introduce an alternative approach to be 

used in the first stage of hybrid techniques of solving the PSP problem. 

The approach proposed herein this study tries to find the best probability 

distributions which fit the angles measurements of clustered 

subsequences. Clustering uses hydrophobicity as a similarity function. 

These fits are then analyzed statistically to determine the effect of 

hydrophobicity and subsequence length on backbone angles. Chapter four 

explains the approach in detail. 
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Chapter 4  

A Central-3-Residues-Based Clustering Approach for Studying 

the Effect of Hydrophobicity on Protein Backbone Angles 

 

4.1 Approach Outline 

As discussed in chapter 3, this study tries to find a relation between the 

central angle of each n-amino acids and the hydrophobicity of these 

surrounding amino acids. The problem is tackled in a four-phased 

approach. The four phases are: 

1. Angle extraction 

2. Chopping 

3. Clustering 

4. Distribution fitting 

Fig 4.1 shows the four phases. The first two phases are data preparation 

phases. The input of the whole system is SCOP20 entries21. 

Phase 1 calculates the central angles of all the subsequences contained in 

each entry using the x, y and z coordinate measurements of each atom 

which are available in the SCOP entries this step is important because 

each SCOP entry contains a huge amount of information about the 

protein. All what is of concern to this study are the 3D coordinates of the 

backbone atoms which are used to calculate the backbone angles 

measurements (as they are not explicitly stored in the SCOP entries). 

Phase 2 is called chopping i.e. dividing each protein into subsequences. 

These subsequences are overlapping as will be shown later. 

                                                             
20

 SCOP: is a structural classification of proteins database for the investigation of sequences and 

structures. 
21

 SCOP entry: A file representing a single protein in SCOP database 
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The third phase clusters protein subsequences using their hydrophobicity 

as the similarity function. The approach used in this study is applied to 

the test data once before clustering and once after clustering. Clustering 

creates groups of subsequences of similar hydrophobicity patterns. On the 

other hand, ignoring the clustering step – i.e. dealing with the whole data 

set as a single cluster – groups all the subsequences in a single set even if 

there hydrophobicity patterns were so different. If the relationship is more 

evident in the big single cluster than it is in the small clusters, we can 

deduce that clustering is useless and that the hydrophobicity pattern of the 

subsequence has nothing to do with the central angle measurement. 

However if the small clusters show more evident relationships then we 

can say that hydrophobicity patterns has direct impact on the central 

angle measurements. Fig 4.1 shows that the third phase (clustering) is 

optional, in this way it is possible to assess the effect of clustering on the 

final relationship between angle measurement and hydrophobicity. 

The fourth phase applies the KS test to find out the best continuous 

probability distribution that fits the central angle measurements of each 

cluster (or of the whole test data set if clustering is ignored). The KS-test 

generates two types of statistics: 

1. The KS-statistic 

2. Number of rejected values 

These statistics will be used in chapter 5 to discuss the results. 

4.2 SCOP databank (test data set) 

In this study we used a sample of 1089 proteins randomly selected from 

the SCOP protein databank. Each protein consists of about 200 

subsequences in average, thus the total number of subsequences is more 
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than 200,000 subsequences. These subsequences represent the input of 

the system. They are then clustered as discussed earlier. 

SCOP uses the same format as that of the PDB22. Each file in the SCOP 

databank represents one protein. Each record (line) in each file starts with 

a word indicating its type. In this study we are concerned with atom 

records. See Fig 4.2. These are records starting with the keyword ATOM. 

Each atom record represents one atom in the protein. Each atom record 

contains 15 pieces of information. Of these 15 the most important are: 

1. A sequential number for each atom 

2. Type label indicating the type of the atom (e.g. Cα atom) 

3. Three letter abbreviation name of the residue containing the atom 

4. Residue sequence number 

5. Orthogonal coordinates for X in Angstroms 

6. Orthogonal coordinates for Y in Angstroms 

7. Orthogonal coordinates for Z in Angstroms 

8. Occupancy 

9. Charge on the atom 

 

                                                             
22

 PDB: The Protein Data Bank (PDB) is a repository for the 3-D structural data of large biological 

molecules, such as proteins and nucleic acids. (See also crystallographic database). The data typically 

obtained by X-ray crystallography or NMR spectroscopy and submitted by biologists and biochemists 

from around the world (freely accessible through the Internet). 



In this study we are concerned with 3, 5, 6 and 7. For a full specification 

of the PDB format see [50].

 

 

4.3 Phase 1: Angle Extraction

In this phase all the input entries are scanned starting at the 

acid residue of the backbone

The angles between each three consecutive residues are calculated.

Assume that the backbone contains only 5 amino acid residues (just for 
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Figure  4.1: System phases 

In this study we are concerned with 3, 5, 6 and 7. For a full specification 

of the PDB format see [50]. 

Phase 1: Angle Extraction 

In this phase all the input entries are scanned starting at the first

of the backbone and ending at the last amino-acid residue

gles between each three consecutive residues are calculated.

Assume that the backbone contains only 5 amino acid residues (just for 

Figure  4.2: SCOP/PDB ATOM record 

In this study we are concerned with 3, 5, 6 and 7. For a full specification 

first amino-

acid residue. 

gles between each three consecutive residues are calculated. 

Assume that the backbone contains only 5 amino acid residues (just for 
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the sake of explanation). 3 theta values will be calculated; θ1 lies between 

Cα
1- Cα

2- Cα
3, θ2 lies between Cα

2- Cα
3- Cα

4 and finally θ3 lies between 

Cα
3- Cα

4- Cα
5. Thus, a protein composed of n amino-acid residues has n-2 

theta angles. 

4.3.1 How θ is calculated 

Assume that we are calculating the angle lying between the three atoms 

Cα
i-1, Cα

i and Cα
i+1 respectively, such that: 

����� = (����, 
���, ����) 

��� = (�� , 
� , ��) 

���
� = (��
�, 
�
�, ��
�) 

The angle theta (θ) is the angle between the two vectors a and b, such 

that: 

� = (��� , �����) 

� = (��� , ���
�) 

Theta is then calculated using Cosine law: 

 cos � = �.�
|�||�| 

Where the numerator is called the dot product23 of the two vectors and the 

symbols |a| and |b| that appear in the denominator are called the norm24s 

of vectors a and b respectively. 
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 The dot product a.b of two vectors � = (��, 
�, ��) and � = (��, 
�, ��) is calculated by the formula: 

   �. � = ���� + 
�
� + ���� 
24

 The norm of vector a = (x,y,z) is calculated by the formula: ��� + 
� + �� 
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4.3.2 Representation 

 

A subsequence of residues is represented by a vector (v). As discussed in 

chapter 2, each residue contains three main consecutive atoms; a central 

Carbon atom (Cα) connected to another Carbon atom (C), a Nitrogen 

atom (N) and a side chain. Each amino acid contains two torsion angles; ɸ 

and Ψ as shown in Fig 4.3. This study is not concerned with these torsion 

angles however the main concern is the angle Θ which is the angle 

between the three consecutive Cα atoms of the three central residues of 

the subsequence (each Cα atom represents the center of one amino-acid 

residue). Θ is the angle between each two lines connecting Cα atoms in 

Fig 4.4. Thus a subsequence S is represented by a vector v and an angle 

Θ: 

� = ( , �:  = "��#,��#
� … ��#
%��&) (1) 

Figure  4.3: ɸ and Ψ torsion angles 

Figure  4.4: Θ-angles 
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Where p is the starting position of the subsequence and aap represents the 

amino-acid residue at position p. Notice that the angle we are talking 

about here is neither ɸ nor Ψ angles of the central amino-acid. 

Alternatively a single (distinct) angle is taken to represent the relative 

positions of every three consecutive amino-acids. A centroid in this study 

is represented by a simple vector of n hydrophobicity values: 

� = "ℎ(,ℎ� … ℎ%��&, 
)*+ℎ -ℎ�- ℎ�  .) -ℎ/ ℎ
0123ℎ2�.+.-
 24 1/).0*/ . .5 -ℎ/ 312-/.5 

(2) 

4.4 Phase 2: Chopping 

All proteins are divided into subsequences of amino acid residues of 

length n. A protein of length L is divided into 6 − 5 + 1 subsequences 

starting at (��( … ��%��) and ending at (��9�% … ��9��). Therefore the 

total number of subsequences considered in this study is : (6� − 5 +;
�<(

1) where N is the total number of proteins. The angle Θ is the angle 

between the three amino acid residues in the center of the 

subsequence (��=>?
@

, ��=>?>@
@

, ��=>?>A
@

), where p is the start position of the 

subsequence in the whole protein sequence. The subsequences are 

overlapping i.e. every two consecutive subsequences of length n shares 

5 − 1 residues. The value of Θ is calculated using the coordinates of Cα 

atoms of these residues taken from the SCOP database as previously 

mentioned. Obviously the number of residues in a subsequence must be 

odd so that the number of residues on both sides of the angle is the same. 

Typical values of n used in this study are 3, 5 and 7. Higher values of n 

are possible but they are computationally intensive. 

4.5 Phase 3: Clustering 

In this phase the subsequences extracted from the chopping phase are 

clustered. A k-means clustering algorithm is used to cluster these 
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subsequences. The similarity function used in clustering is the key factor 

of this approach. Each amino acid residue has a hydrophobicity value as 

discussed in chapter two. The 20 amino acid residues available have 

hydrophobicity values ranging from Arginine – the hydrophilic extreme – 

to Isoleucine – the hydrophobic extreme – with typical values -4.5 and 

+4.5 respectively. Subsequences A and B are considered similar if the 

differences between the hydrophobicity values of each two corresponding 

amino acid residues in the two subsequences are small. 

The Following points explain how the k-means clustering algorithm is 

applied: 

1. Before the clustering algorithm starts, a copy of the unclustered 

subsequences is saved. Phase 4 – distribution fitting – will be applied 

to the unclustered subsequences as well as clustered subsequences in 

order to assess the importance of clustering in the approach under 

study. 

2. The sets of subsequences generated from step 1 are then fed to the k-

means clustering algorithm. As mentioned in phase 2, the three 

values of n considered in this study are 3, 5 and 7 i.e. three groups of 

subsequences are available. The clustering algorithm is applied three 

times to the three groups of subsequences. This algorithm uses 

residues hydrophobicity as a similarity measurement (as will be 

discussed later). 

3. Initial centroids are pre-known and are based on the value of n. 

When creating the initial centroids each position in the subsequence 

is assumed to be either hydrophobic25 (H) or hydrophilic26 (P)27. 

Taking the two extremes of hydrophobicity into consideration, 

                                                             
25

  Having a strong aversion for water 
26

  Having a strong affinity for water 
27

  P here stands for "polar" which has the same meaning as "hydrophilic". 
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namely Isoleucine (+4.5) and Arginine         (-4.5), leaves us with 

only two choices for each residue position. Calculating all the 

permutations of a subsequence of length n results in a total of 2
n 

centroids. For example table 4.1 lists the initial centroids if 5 = 3. 

 

 

H H H 

H H P 

H P H 

H P P 

P H H 

P H P 

P P H 

P P P 

 

4. Similarity function: Let the hydrophobicity of a residue �� be ��. ℎ. 

The similarity function measures how a subsequence S is similar to 

some centroid C in terms of hydrophobicity. The function simply 

calculates the average of differences in hydrophobicity between the 

residues of S and the corresponding hydrophobicity values in C. 

C (��� . ℎ − ℎ�))
5

%

�<(
 

(3) 

 

4.6 Phase 4: Distribution Fitting 

2% clusters of similar subsequences – in terms of hydrophobicity – 

resulting from the k-means clustering are obtained. Two Kolmogrov-

Table 4.1: lis>ng of the initial centroids 

used in clustering given that n = 3. Each 

cell represents the hydrophobicity of one 

hypothetical amino acid residue in the 

each centroid. H represents +4.5 while P 

represents -4.5. 
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Smirnov (KS)28 tests are performed. The first test is performed on the 

unclustered subsequences while the second test is performed on the 

2% clusters generated from phase 3. KS test is performed against the 

following 66 standard continuous probability distributions: Beta, Burr, 

Burr (4P)29, Cauchy, Chi-Squared, Chi-Squared (2P), Dagum, 

Dagum (4P), Erlang, Erlang (3P), Error, Error Function, Exponential, 

Exponential (2P), Fatigue Life, Fatigue Life (3P), Frechet,  Frechet (3P), 

Gamma, Gamma (3P), Gen. Extreme Value, Gen. Gamma, 

Gen. Gamma (4P), Gen. Logistic, Gen. Pareto, Gumbel Max, 

Gumbel Min, Hypersecant, Inv. Gaussian, Inv. Gaussian (3P), 

Johnson SB, Johnson SU, Kumaraswamy, Laplace, Levy, Levy (2P), 

Log-Gamma, Log-Logistic, Log-Logistic (3P), Log-Pearson 3, Logistic, 

Lognormal, Lognormal (3P), Nakagami, Normal, Pareto, Pareto 2, 

Pearson 5, Pearson 5 (3P), Pearson 6, Pearson 6 (4P), Pert, Phased Bi-

Exponential, Phased Bi-Weibull, Power Function, Rayleigh, 

Rayleigh (2P), Reciprocal, Rice, Student's t, Triangular, Uniform, 

Wakeby, Weibull and Weibull (3P). Parameters are estimated using 

Maximum Likelihood Estimation (MLE)30. 

Results are discussed in the next chapter. 

  

                                                             
28

 Kolmogrov-Smirnov: A non-parametric statistical test used to determine if two separate samples 

could have been drawn from the same population, or populations with the same distributions. Or 

measures to how extent a standard probability density function fits a sample or a population. 
29

  2P, 3P and 4P refer to two, three and four parameters distributions respectively. A typical 

distribution is said to be (n-1) P if its loca>on parameter is set to 1 and (n) P otherwise. 
30

 Maximum Likelihood Estimation (MLE): a method of parameter estimation in which a parameter is 

estimated to be that value for which the data are most likely. 
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Chapter 5  

Results 

 

This chapter discusses the results reached during conducting this study. 

The hypothesis we are trying to prove is stated. The procedure followed 

to generate the results is explained in detail, the tools used are listed and 

the results are discussed. 

5.1 Hypothesis 

Through conducting this study we try to argue about two assumptions: 

1. The first part of the hypothesis suggests that the angles 

measurements of a protein sequences follow some sort of pattern 

based on the hydrophobicity of the surrounding local amino acid 

residues. 

2. The second part suggests that the reliability of these patterns 

increases as the number of neighboring amino acid residues taken 

into consideration increases. 

5.2 Procedure 

As discussed in chapter 4 the procedure consists of 4 consecutive steps. 

Here we are going to re-order and thoroughly explain them to indicate the 

actual sequence of the detailed steps of the algorithm in the following 15 

points: 

1. Angle extraction31 

2. Chopping32 

3. Apply a KS-test on unclustered subsequences of length 5 = 3 33 

4. Apply a KS-test on unclustered subsequences of length 5 = 5 34 
                                                             

31
 For a complete discussion of this step, refer back to sec>on 4.3 

32
 For a complete discussion of this step, refer back to sec>on 4.4 

33
 For a complete discussion of this step, refer back to sec>on 4.6 
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5. Apply a KS-test on unclustered subsequences of length 5 = 7 35 

6. K-means Clustering36 

7. Apply a KS-test on clustered subsequences of length 5 = 3 37 

8. Apply a KS-test on clustered subsequences of length 5 = 5 38 

9. Apply a KS-test on clustered subsequences of length 5 = 7 39 

10. Compare the KS-statistic values of the tests carried out in steps 7, 8 

and 9 (in order to find the effect of increasing the value of n with 

clustered subsequences). 

11. Compare the number of rejected values (out of five values) of the 

tests carried out in steps 7, 8 and 9 (In order to determine the 

reliability of the fits when using clustered subsequences). 

12. Compare the KS-statistic values of the tests carried out in steps 3, 4 

and 5 (in order to find the effect of increasing the value of n with 

unclustered subsequences). 

13. Compare the number of rejected values (out of five values) of the 

tests carried out in steps 3, 4 and 5 (In order to determine the 

reliability of the fits when using clustered subsequences). 

14. Compare the results of steps 10 and 12 (In order to find out the 

effect of clustering). 

15. Compare the results of steps 11 and 13 (In order to find out the 

effect of clustering). 

 

                                                                                                                                                                               
34

 For a complete discussion of this step, refer back to sec>on 4.6 
35

 For a complete discussion of this step, refer back to sec>on 4.6 
36

 For a complete discussion of this step, refer back to sec>on 4.5 
37

 For a complete discussion of this step, refer back to sec>on 4.6 
38

 For a complete discussion of this step, refer back to section 4.6 
39

 For a complete discussion of this step, refer back to sec>on 4.6 
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5.3 Tools 

Two pieces of software40 have been developed to perform the first three 

steps: 

1. The first is the preparation engine which is fed with the SCOP 

entries on which it performs angle extraction and chopping. 

2. The second is the clustering engine which is responsible for 

applying the k-means clustering algorithm on the chopped 

subsequences. 

Distribution fitting (KS-test) is performed using a readymade software 

package called EasyFit. 

5.4 Results 

First of all hydrophobicity values of the final centroids are listed for each 

value of n (remember that n is the subsequence length). The results of the 

k-means clustering are then discussed as well as the results of the KS 

tests for both clustered and unclustered subsequences. 

Table 5.1 summarizes the best fitting distributions for all the three values 

of n. The goodness of these fits will be discussed later in this section. The 

left column contains the name of continuous probability distributions 

while the corresponding cells in the right column contain the IDs of the 

centroids that fit into these distributions i.e. the third row in table one 

indicates that the two centroids ��and �G resulting from clustering 

subsequences of length 3 fits into Burr continuous probability 

distribution. The typical hydrophobicity values of these centroids are 

listed in appendix (I). 

 

                                                             
40

 Developed in Java 
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continuous distribution centroids that the continuous distribution best fits 

n = 3 

Burr 1, 4 

Burr(4p) 7 

Gen. Extreme Value 6 

Gen. Pareto 2, 3, 5 

Johnson SB 0 

n = 5 

Dagum(4p) 0, 5, 7, 19 

Gumbel Min. 1, 2, 3, 17, 20 

Gen. Extreme Value 4, 32 

Burr(4p) 6, 8, 10, 11, 14, 18, 21, 22, 23, 24, 27, 30, 31 

Weibull(3p) 9, 12, 13, 15, 16, 25, 26, 28, 29 

n = 7 

Weibull(3p) 3, 21, 79 

Burr(4p) 20, 32, 40, 60, 67, 71, 74, 75, 83, 85, 105 

Dagum 4, 80 

Dagum(4p) 41, 90 

Gen. Gamma(4p) 69, 84, 106 

Gen. Logistic 
2, 6, 7, 9, 12, 14, 15, 19, 33, 34, 35, 36, 37, 45, 46, 47, 49, 79, 87, 

89, 94, 95, 107, 117, 125 

Gumbel Min. 66 

Log-Logistic 42, 116, 118 

Wakeby 1, 5, 8, 10, 11, 13, 16, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 

38, 39, 43, 44, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 

Table 5.1: Best fitting distribution of each centroid of the three 
values of n 
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64, 65, 68, 70, 72, 73, 76, 77, 78, 81, 82, 86, 88, 91, 92, 93, 96, 98, 

99, 100, 101, 102, 103, 104, 108, 109, 110, 111, 112, 113, 114, 

115, 119, 120, 121, 122, 123, 124, 126, 127 

 

 

Figure  5.1: average KS-statistic of clustered data 

5.4.1 Discussing part 2 of the hypothesis 

From Fig 5.1 it is quite obvious that the longer the subsequence the 

smaller the KS-statistic value. The values of the statistic are 0.0937, 

0.0243 and 0.0202 for subsequences of length 3, 5 and 7 respectively. 

From Fig 5.2 it is apparent that the number of rejected critical values 

greatly decreases with longer subsequences. For subsequences of length 3 

all the five critical points are rejected for all the centroids. Thus 

subsequences of length 3 have no reliable fit among the tested 

distributions. 5 residues centroids have better results in terms of the 

number of rejected points. An average of 2.94 critical points is rejected 

among all the centroids. Finally centroids of length 7 achieves an average 

of zero rejected critical point, i.e. all the critical point for all the centroids 

of length 7 are accepted. Clearly, the length of the subsequence is 

effective in terms of the KS-statistic and the number of rejected critical 

values, the thing that proves the second part of the hypothesis. 

 

0

0.02

0.04

0.06

0.08

0.1

012345678

KS-statistic

KS-statistic



٤٤ 

 

 

Figure  5.2: number of rejected cri>cal values out of 5 of clustered data 

5.4.2 Discussing part 1 of the hypothesis 

The same KS-test was performed on unclustered data for n=3, n=5 and 

n=7. For the three values of n the best fitting distribution was the Wakeby 

distribution. This is due to the great flexibility of this distribution. The 

value of the test statistics for the three values of n was found to be 

0.09041, 0.012 and 0.013 respectively. However these results are not as 

interesting as they seem to be since all the 5 critical values were rejected 

for all the values of n for unclustered data. The thing that proves the 

effect of clustering on the final results which in turn emphasis on the 

existence of a relationship between hydrophobicity pattern and angles 

measurements, the thing that proves the first part of the hypothesis. 
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Chapter 6  

Conclusion and Future Work 

 

6.1 Conclusion 

From the previous chapter it is now clear that there exists a direct 

relationship between the hydrophobicity of the residues of a subsequence 

and the measurements of the backbone angles. Classifying a subsequence 

into one of the available clusters will give a good insight of the angles 

measurements and consequently the structure of the subsequence. Also 

the length of the subsequence is an effective factor in angle measurement 

prediction process. Longer subsequences achieve better fits in one of the 

standard continuous probability distributions. 

6.2 Future work 

These results can be used to guide the search process in a complete 

protein structure prediction algorithm. Using these results can greatly 

reduce the search space which can increase both the efficiency and the 

effectiveness of the search process. This angle-hydrophobicity 

relationship can be used combined with heuristic techniques like genetic 

algorithm to restrict the initial population to statistically familiar 

conformation. In this case it is better to apply these guiding rules to only 

a portion of the initial population in order to leave a chance to the new 

unfamiliar conformations. Approximations of our results can be applied 

to crystalline lattices protein models like cube octahedron lattice model 

which allows the use of several possible angles 60", 90", 120" and 180". 

Applying the results to this algorithm will allow the predictor to use the 

most statistically realistic angle of the available alternatives based on its 

neighboring residues. Also, it is possible to investigate applying the same 
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approach on subsequences of length more than 7 residues and try to 

minimize the required processing time. 
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Appendix (I) 

Hydrophobicity values of the final k-means centroids 

 

5 = 3 

�( = (3.26, 3.27, 3.22) �� = (3.28, 3.29, −2.49) �� = (3.27, −2.43, 3.25) 

�L = (3.34, −2.46, −2.47) �G = (−2.54, 3.28, 3.32) �M = (−2.39, 3.34, −2.42) 

�N = (−2.48, −2.45, 3.35) �O = (−2.35, −2.37, −2.36)  

 

 

5 = 5 

�( = (3.13, 3.23, 3.17, 3.05, 3.07) �� = (3.33, 3.22, 3.19, 3.21, −2.36) 

�� = (3.22, 3.25, 3.14, −2.54, 3.11) �L = (3.28, 3.33, 3.28, −2.42, −2.42) 

�G = (3.15, 3.22, −2.67, 3.08, 3.23) �M = (3.31, 3.24, −2.41, 3.17, −2.37) 

�N = (3.23, 3.28, −2.61, −2.57, 3.25) �O = (3.34, 3.35, −2.41, −2.48, −2.36) 

�Q = (3.16, −2.63, 3.21, 3.29, 3.20) �R = (3.29, −2.53, 3.18, 3.28, −2.51) 

��( = (3.25, −2.33, 3.25, −2.31, 3.29) ��� = (3.29, −2.36, 3.32, −2.40, −2.41) 

��� = (3.29, −2.59, −2.62, 3.27, 3.30) ��L = (3.32, −2.54, −2.44, 3.33, −2.45) 

��G = (3.33, −2.37, −2.46, −2.42, 3.35) ��M = (3.38, −2.40, −2.43, −2.39, −2.34) 

��N = (−2.59, 3.29, 3.24, 3.25, 3.19) ��O = (−2.53, 3.28, 3.36, 3.25, −2.51) 

��Q = (−2.54, 3.25, 3.27, −2.50, 3.15) ��R = (−2.53, 3.28, 3.35, −2.52, −2.57) 

��( = (−2.37, 3.27, −2.50, 3.25, 3.32) ��� = (−2.40, 3.31, −2.32, 3.36, −2.37) 

��� = (−2.38, 3.34, −2.53, −2.47, 3.34) ��L = (−2.38, 3.37, −2.38, −2.42, −2.44) 

Table 1: Final centroids of k-means clustering of subsequences of length 3 

Table 2: Final centroids of k-means clustering of subsequences of length 
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��G = (−2.41, −2.50, 3.33, 3.33, 3.27) ��M = (−2.52, −2.53, 3.33, 3.34, −2.51) 

��N = (−2.52, −2.42, 3.32, −2.42, 3.33) ��O = (−2.43, −2.40, 3.39, −2.47, −2.46) 

��Q = (−2.37, −2.41, −2.46, 3.37, 3.36) ��R = (−2.39, −2.42, −2.39, 3.38, −2.45) 

�L( = (−2.36, −2.39, −2.39, −2.41, 3.39) �L� = (−2.31, −2.28, −2.26, −2.27, −2.32) 

 

 

5 = 7 

�( = (3.10, 3.20, 3.07, 3.19, 2.98, 2.82, 2.90) �� = (3.20, 3.12, 3.21, 3.22, 2.92, 3.02, −2.52) 

�� = (3.12, 3.22, 3.27, 2.79, 3.01, −2.62, 2.96) �L = (3.09, 3.28, 3.11, 3.06, 3.17, −2.45, −2.62) 

�G = (3.16, 3.04, 3.12, 3.19, −2.74, 3.12, 3.17) �M = (3.32, 3.24, 3.09, 3.14, −2.37, 3.00, −2.17) 

�N = (3.23, 3.13, 3.25, 3.15, −2.56, −2.45, 3.15) �O = (3.44, 3.29, 3.23, 3.28, −2.19, −2.41, −2.26) 

�Q = (3.18, 2.95, 3.14, −2.66, 2.98, 3.14, 3.02) �R = (3.17, 3.12, 3.19, −2.72, 3.10, 3.27, −2.49) 

��( = (3.22, 3.26, 3.16, −2.39, 3.02, −2.10, 3.19) ��� = (3.25, 3.40, 3.10, −2.46, 3.19, −2.41, −2.34) 

��� = ( 3.13, 3.21, 3.25, −2.56, −2.60, 3.23, 3.17) ��L = ( 3.22, 3.34, 3.21, −2.60, −2.34, 3.21, −2.39) 

��G = ( 3.27, 3.35, 3.27, −2.26, −2.39, −2.26, 3.30) ��M = ( 3.37, 3.34, 3.33, −2.37, −2.42, −2.26, −2.25) 

��N = ( 3.04, 3.11, −2.52, 2.93, 3.19, 3.12, 2.94) ��O = ( 3.05, 3.20, −2.68, 3.06, 3.21, 3.11, −2.67) 

��Q = ( 3.13, 3.28, −2.62, 3.05, 3.06, −2.65, 3.00) ��R = ( 3.22, 3.24, −2.72, 3.12, 3.31, −2.59, −2.68) 

��( = ( 3.14, 3.13, −2.09, 3.01, −2.30, 3.11, 3.18) ��� = ( 3.31, 3.25, −2.36, 3.16, −2.30, 3.28, −2.37) 

��� = ( 3.39, 3.31, −2.48, 3.18, −2.54, −2.54, 3.18) ��L = ( 3.30, 3.21, −2.49, 3.23, −2.32, −2.33, −2.46) 

��G = ( 3.04, 3.27, −2.62, −2.54, 3.11, 3.15, 3.08) ��M = ( 3.16, 3.28, −2.59, −2.75, 3.24, 3.29, −2.63) 

��N = ( 3.26, 3.19, −2.63, −2.57, 3.17, −2.37, 3.28) ��O = ( 3.29, 3.32, −2.59, −2.46, 3.32, −2.48, −2.51) 

��Q = ( 3.34, 3.26, −2.27, −2.59, −2.33, 3.32, 3.28) ��R = ( 3.27, 3.35, −2.39, −2.46, −2.30, 3.37, −2.39) 

�L( = ( 3.32, 3.35, −2.43, −2.56, −2.36, −2.43, 3.35) �L� = ( 3.38, 3.38, −2.43, −2.39, −2.39, −2.30, −2.32) 

�L� = ( 3.06, −2.44, 2.98, 3.28, 3.17, 3.02, 3.08) �LL = ( 3.05, −2.66, 3.30, 3.18, 3.28, 3.16, −2.28) 

Table 3: Final centroids of k-means clustering of subsequences of length 7 
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�LG = ( 3.18, −2.67, 3.20, 3.25, 3.08, −2.47, 3.08) �LM = ( 3.22, −2.63, 3.22, 3.38, 3.24, −2.66, −2.51) 

�LN = ( 3.31, −2.45, 3.03, 3.15, −2.60, 3.10, 3.15) �LO = ( 3.33, −2.44, 3.09, 3.28, −2.33, 3.16, −2.47) 

�LQ = ( 3.18, −2.61, 3.10, 3.22, −2.59, −2.65, 3.20) �LR = ( 3.34, −2.55, 3.31, 3.36, −2.54, −2.56, −2.41) 

�G( = ( 3.06, −2.20, 3.10, −2.42, 3.11, 3.29, 3.15) �G� = ( 3.24, −2.34, 3.25, −2.32, 3.22, 3.23, −2.48) 

�G� = ( 3.23, −2.30, 3.26, −2.21, 3.29, −2.46, 3.29) �GL = ( 3.32, −2.37, 3.28, −2.33, 3.37, −2.41, −2.46) 

�GG = ( 3.23, −2.25, 3.21, −2.51, −2.66, 3.33, 3.31) �GM = ( 3.28, −2.35, 3.30, −2.50, −2.42, 3.25, −2.39) 

�GN = ( 3.21, −2.44, 3.30, −2.28, −2.33, −2.47, 3.24) �GO = ( 3.36, −2.37, 3.37, −2.35, −2.32, −2.40, −2.35) 

�GQ = ( 3.22, −2.57, −2.68, 3.27, 3.16, 3.17, 3.07) �GR = ( 3.32, −2.41, −2.46, 3.26, 3.32, 3.13, −2.52) 

�M( = ( 3.24, −2.66, −2.76, 3.30, 3.25, −2.62, 3.04) �M� = ( 3.32, −2.62, −2.60, 3.25, 3.35, −2.53, −2.64) 

�M� = ( 3.19, −2.55, −2.45, 3.24, −2.52, 3.26, 3.30) �ML = ( 3.33, −2.59, −2.48, 3.24, −2.33, 3.34, −2.47) 

�MG = ( 3.34, −2.44, −2.43, 3.40, −2.53, −2.45, 3.42) �MM = ( 3.35, −2.56, −2.41, 3.39, −2.45, −2.59, −2.48) 

�MN = ( 3.26, −2.46, −2.50, −2.38, 3.33, 3.34, 3.27) �MO = ( 3.28, −2.26, −2.55, −2.45, 3.32, 3.27, −2.48) 

�MQ = ( 3.31, −2.37, −2.52, −2.39, 3.35, −2.54, 3.29) �MR = ( 3.39, −2.40, −2.37, −2.44, 3.37, −2.45, −2.47) 

�N( = ( 3.40, −2.48, −2.56, −2.38, −2.49, 3.35, 3.48) �N� = ( 3.34, −2.30, −2.46, −2.47, −2.39, 3.39, −2.46) 

�N� = ( 3.36, −2.41, −2.42, −2.38, −2.29, −2.39, 3.45) �NL = ( 3.41, −2.42, −2.34, −2.35, −2.28, −2.36, −2.44) 

�NG = (−2.44, 3.17, 3.16, 3.18, 3.28, 2.97, 3.00) �NM = (−2.45, 3.10, 3.28, 3.13, 3.00, 3.18, −2.48) 

�NN = (−2.69, 3.29, 3.13, 3.25, 3.21, −2.42, 3.08) �NO = (−2.64, 3.41, 3.29, 3.32, 3.26, −2.25, −2.33) 

�NQ = (−2.52, 3.24, 3.05, 3.18, −2.70, 3.03, 3.27) �NR = (−2.53, 3.24, 3.47, 3.12, −2.46, 3.19, −2.37) 

�O( = (−2.61, 3.22, 3.33, 3.26, −2.61, −2.41, 3.25) �O� = (−2.47, 3.36, 3.41, 3.33, −2.42, −2.41, −2.27) 

�O� = (−2.50, 3.11, 3.17, −2.63, 3.04, 3.22, 3.16) �OL = (−2.64, 3.24, 3.26, −2.67, 3.10, 3.22, −2.67) 

�OG = (−2.52, 3.23, 3.22, −2.19, 3.15, −2.40, 3.23) �OM = (−2.49, 3.31, 3.33, −2.51, 3.22, −2.40, −2.46) 

�ON = (−2.58, 3.10, 3.29, −2.62, −2.74, 3.20, 3.28) �OO = (−2.54, 3.25, 3.31, −2.61, −2.58, 3.30, −2.47) 

�OQ = (−2.55, 3.27, 3.35, −2.41, −2.57, −2.34, 3.38) �OR = (−2.47, 3.37, 3.39, −2.47, −2.49, −2.45, −2.41) 

�Q( = (−2.38, 3.06, −2.61, 3.32, 3.20, 3.29, 3.17) �Q� = (−2.40, 3.22, −2.62, 3.29, 3.40, 3.22, −2.56) 
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�Q� = (−2.35, 3.35, −2.35, 3.08, 3.33, −2.30, 3.23) �QL = (−2.36, 3.32, −2.47, 3.31, 3.31, −2.53, −2.53) 

�QG = (−2.35, 3.23, −2.42, 3.31, −2.40, 3.23, 3.28) �QM = (−2.51, 3.32, −2.33, 3.33, −2.29, 3.38, −2.45) 

�QN = (−2.26, 3.25, −2.24, 3.32, −2.49, −2.50, 3.33) �QO = (−2.46, 3.37, −2.33, 3.43, −2.33, −2.32, −2.39) 

�QQ = (−2.44, 3.32, −2.38, −2.52, 3.33, 3.32, 3.16) �QR = (−2.36, 3.31, −2.66, −2.61, 3.28, 3.33, −2.53) 

�R( = (−2.38, 3.34, −2.55, −2.42, 3.28, −2.41, 3.33) �R� = (−2.38, 3.37, −2.46, −2.39, 3.43, −2.49, −2.55) 

�R� = (−2.32, 3.28, −2.36, −2.50, −2.49, 3.32, 3.30) �RL = (−2.48, 3.38, −2.39, −2.40, −2.49, 3.35, −2.55) 

�RG = (−2.38, 3.38, −2.34, −2.46, −2.48, −2.42, 3.39) �RM = (−2.35, 3.40, −2.40, −2.36, −2.35, −2.27, −2.42) 

�RN = (−2.40, −2.45, 3.17, 3.24, 3.14, 3.11, 3.12) �RO = (−2.39, −2.65, 3.40, 3.27, 3.31, 3.28, −2.32) 

�RQ = (−2.44, −2.46, 3.26, 3.36, 3.18, −2.61, 3.16) �RR = (−2.42, −2.45, 3.38, 3.38, 3.34, −2.38, −2.35) 

��(( = (−2.61, −2.66, 3.28, 3.28, −2.69, 3.07, 3.25) ��(� = (−2.43, −2.52, 3.39, 3.30, −2.43, 3.21, −2.37) 

��(� = (−2.57, −2.52, 3.25, 3.35, −2.63, −2.64, 3.30) ��(L = (−2.48, −2.48, 3.36, 3.38, −2.39, −2.49, −2.41) 

��(G = (−2.44, −2.47, 3.19, −2.69, 3.37, 3.35, 3.27) ��(M = (−2.54, −2.37, 3.38, −2.48, 3.23, 3.36, −2.43) 

��(N = (−2.58, −2.52, 3.31, −2.44, 3.34, −2.26, 3.34) ��(O = (−2.51, −2.38, 3.34, −2.27, 3.39, −2.39, −2.36) 

��(Q = (−2.60, −2.46, 3.37, −2.61, −2.54, 3.28, 3.34) ��(R = (−2.35, −2.40, 3.39, −2.49, −2.39, 3.45, −2.50) 

���( = (−2.54, −2.41, 3.36, −2.43, −2.50, −2.50, 3.40) ���� = (−2.33, −2.36, 3.41, −2.40, −2.46, −2.41, −2.32) 

���� = (−2.50, −2.32, −2.54, 3.34, 3.30, 3.28, 3.28) ���L = (−2.37, −2.43, −2.46, 3.37, 3.41, 3.38, −2.43) 

���G = (−2.30, −2.43, −2.47, 3.37, 3.31, −2.49, 3.22) ���M = (−2.37, −2.43, −2.40, 3.37, 3.39, −2.45, −2.47) 

���N = (−2.42, −2.47, −2.39, 3.33, −2.60, 3.29, 3.39) ���O = (−2.40, −2.50, −2.39, 3.39, −2.33, 3.39, −2.24) 

���Q = (−2.49, −2.46, −2.43, 3.38, −2.54, −2.45, 3.35) ���R = (−2.28, −2.31, −2.36, 3.40, −2.39, −2.39, −2.43) 

���( = (−2.47, −2.41, −2.32, −2.54, 3.37, 3.38, 3.36) ���� = (−2.38, −2.39, −2.36, −2.43, 3.40, 3.40, −2.46) 

���� = (−2.36, −2.43, −2.47, −2.39, 3.38, −2.38, 3.38) ���L = (−2.28, −2.36, −2.39, −2.35, 3.40, −2.46, −2.38) 

���G = (−2.45, −2.37, −2.29, −2.32, −2.46, 3.42, 3.33) ���M = (−2.36, −2.33, −2.33, −2.39, −2.35, 3.39, −2.41) 

���N = (−2.32, −2.39, −2.29, −2.27, −2.41, −2.40, 3.37) ���O = (−2.20, −2.14, −2.18, −2.14, −2.14, −2.18, −2.16) 
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Appendix (II) 

NP-Completeness 

In computational complexity theory, P, also known as PTIME, is one of 

the most fundamental complexity classes. It contains all decision 

problems which can be solved by a deterministic Turing machine using a 

polynomial amount of computation time, or polynomial time. 

Cobham's thesis holds that P is the class of computational problems 

which are "efficiently solvable" or "tractable"; in practice, some problems 

not known to be in P have practical solutions, and some that are in P do 

not, but this is a useful rule of thumb. 

P is known to contain many natural problems, including the decision 

versions of linear programming, calculating the greatest common divisor, 

and finding a maximum matching. In 2002, it was shown that the problem 

of determining if a number is prime is in P [18]. 

In computational complexity theory, NP is one of the most fundamental 

complexity classes. The abbreviation NP refers to "Nondeterministic 

Polynomial time". 

Intuitively, NP is the set of all decision problems for which the 'yes'-

answers have simple proofs of the fact that the answer is indeed 'yes'. 

More precisely, these proofs have to be verifiable in polynomial time by a 

deterministic Turing machine. In an equivalent formal definition, NP is 

the set of decision problems solvable in polynomial time by a non-

deterministic Turing machine. 
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NP-complete is a subset of NP, the set of all decision problems whose 

solutions can be verified in polynomial time; NP may be equivalently 

defined as the set of decision problems that can be solved in polynomial 

time on a nondeterministic Turing machine. A problem p in NP is also in 

NPC if and only if every other problem in NP can be transformed into p 

in polynomial time. Subset sum problem is a famous example of NP-

Complete problems. 

Subset sum problem 

The problem is this: given a set of integers, does the sum of some non-

empty subset equal exactly zero? For example, given the set {−7, −3, −2, 

5, 8}, the answer is YES because the subset {−3, −2, 5} sums to zero. 

Other well-known NP-complete problems 

• Boolean satisfiability problem (SAT) 

• N-puzzle 

• Knapsack problem 

• Hamiltonian path problem 

• Travelling salesman problem 

• Subgraph isomorphism problem 

• Clique problem 

• Vertex cover problem 

• Independent set problem 

• Dominating set problem 

• Graph coloring problem 

In 1998 Bonnie Berger and Tom Leighton have shown that protein 

folding in the HP model is NP-complete. They have thus "settled the 

recurring open question about the complexity of protein folding in this 
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model" in their own terms. Their work also complements existing efforts 

to characterize various hardness aspects of protein folding. In particular, 

their proof shows that any reasonably fast protein folding algorithm will 

have to rely on aspects other than just hydrophobicity considerations. 

However their methods do not apply to the 2D square lattice, although the 

3D cubic model that they studied seems to be more relevant to the actual 

protein folding problem. Nor does their proof directly apply to the 3D 

tetrahedral lattice. 
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Appendix (III) 

Constraint Satisfaction Problem 

What is a constraint satisfaction problem? 

This is a family of problems not a single problem. A problem from this 

family deals with constraints. There are constraints all around us, such as 

managing work and home life and making sure we don't go over budget, 

and we figure out ways to deal with them to varying success. Sometimes 

we fail and this is most often due to our limited capacity to deal with 

problems involving a large amount of variables and constraints. This is 

where computers, and more specifically, constraint satisfaction problems 

(CSPs), are necessary. 

Like most problems in artificial intelligence (AI), CSPs are solved 

through search. CSPs – unlike other AI problems – have a standard 

structure that allows general search algorithms using heuristics to be 

implemented for any CSP. The structure of the CSP problem is largely 

independent of its domain. These special and defining characteristics 

make CSPs both interesting and worthwhile to study. 

What are the practical applications of CSPs? 

CSPs best suites general temporal and combinatorial problems, among 

other things. The following are examples where constraint programming 

has been successfully applied: 

1. Operations Research (scheduling, timetabling) 

2. Bioinformatics (DNA sequencing, protein folding) 

3. Electrical engineering (circuit layout-ing) 

4. Telecommunications 

5. Hubbell telescope/Satellite scheduling 
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Generally speaking, CSPs are a rather recent formulation. There is not 

extensive published literature on the subject, but they are widely studied 

and their applications will continue to increase. 

Definition of a CSP 

Formal definition 

The formal definition of a CSP involves variables and their domains, and 

constraints. Suppose we have a set of variables, X1, X2... Xn, all with 

domains D1, D2... Dn such that all variables Xi have a value in their 

respective domain Di. There is also a set of constraints, C1, C2... Cm, such 

that a constraint Ci restricts (imposes a constraint on) the possible values 

in the domain of some subset of the variables. A solution to a CSP is an 

assignment of every variable some value in its domain such that every 

constraint is satisfied. Therefore, each assignment (a state change or step 

in a search) of a value to a variable must be consistent: it must not violate 

any of the constraints. 

As in any AI search problem, there can be multiple solutions (or none). 

To address this, a CSP may have a preference of one solution over 

another using some preference. 

Finite vs. real-valued domains 

Here we are concerned only with CSP's that have finite domain variables. 

This means that the domains are a finite set of integers, as opposed to a 

real-valued domain that would include an infinite number of real-values 

between two bounds. 

The modeling of a real problem 

Consider the popular N-Queens problem used throughout AI. This 

problem involves placing n queens on an n x n chessboard such that no 

queen is attacking another queen. (According to the rules of chess, a 

queen is able to attack another piece – in this case, a queen – if it is in the 
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same row, column, or diagonal from that queen.) There are, of course, 

many ways to formulate this problem as a CSP (think: variables, 

domains, and constraints). A simple model is to represent each queen as a 

row so that (for example) to solve the 4-queen problem, we have 

variables Q1, Q2, Q3, and Q4. Each of these variables has an integer 

domain, whose values correspond to the different columns, 1-4. An 

assignment consists of assigning a column to a queen, i.e. {Q1 = 2}, 

which "places" a queen in row 1, column 2. The constraints on the 

problem restrict certain values for each variable so that all assignments 

are consistent. For example, after we have assigned Q1, and now want to 

assign Q2, we know we cannot use value 2, since this would violate a 

constraint: Q1 could attack Q2 and vice versa. Thus we come up with the 

following variables, values, and constraints to model this problem: 

 

Variables: { Q1, Q2, Q3, Q4 } 

Domain: { (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4) } 

Constraints: AllDifferent(Q1, Q2, Q3, Q4) and  

for i = 0...n and j = (i+1)...n, k = j-i, Q[i] != Q[j] + k and Q[i] != Q[j] - k.  


